Threshold voltage shift ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Delta {V}_{\text{T}}$ </tex-math></inline-formula> ) under various current stress (CS) conditions need to be quantitatively studied in self-aligned top-gate amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). Here, we propose a stretched-exponential function (SEF)-based <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Delta {V}_{\text{T}}$ </tex-math></inline-formula> model that can be applied to various combinations of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text{GS}}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text{DS}}$ </tex-math></inline-formula> . The proposed model indicates the characteristic electron trapping time constant <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau _{1}$ </tex-math></inline-formula> is inversely proportional to ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text{GS}} - {V}_{\text{T}}$ </tex-math></inline-formula> ). In contrast, the time constant <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\tau _{2}$ </tex-math></inline-formula> is directly proportional to the square root of ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text{DS}}+{V}_{\text{bi}}$ </tex-math></inline-formula> ), presumably due to the local donor creation by a lateral electric field. The proposed model was verified experimentally in various <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text{GS}}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text{DS}}$ </tex-math></inline-formula> configurations. Further, it is confirmed that the lateral electric field dominantly influences donor creation near the drain.
Read full abstract