The repair of damaged gastric mucosa is a complex process involving prostaglandins (PG) and mucosal growth factors such as epidermal growth factor (EGF). Recently, we postulated that the increased occurence of apoptosis in the gastric epithelium might be of pathophysiological importance in the development of stress lesions. The aim of the present study was to assess the effect of the pretreatment of rats, exposed to 3.5 h of water immersion and restraint stress (WRS), with EGF and PG (16,16 dmPGE 2) on the number of stress lesions, recovery of gastric mucosa from stress and the expression of apoptosis related genes such as caspase-3 and antiapoptotic bcl-2. Rats were divided in following groups: (1) vehicle; (2) EGF 100 μg/kg i.p.; (3) 16,16 dm-PGE 2 (5 μg/kg i.g.) and caspase-1 inhibitor (ICE-I; 100 μg/kg i.p.). One hour later, the rats were exposed to 3.5 h of WRS and then sacrificed immediately (0 h) or at 6, 12, or 24 h after WRS. The number of acute gastric lesions was determined. Gastric epithelial apoptosis was assessed by TUNEL staining. In addition, mRNA expression of caspase-3, Bcl-2 and proinflammatory cytokines (IL-1β, TNFα) was assessed by RT-PCR. PGE 2 generation in gastric mucosa and luminal EGF were determined by RIA. Exposure to WRS resulted in the development of multiple acute stress erosions (∼18) which almost completely healed during 24 h. The gastric blood flow was significantly reduced (∼70% of intact mucosa) immediately after WRS. The expression of mRNA for IL-1β and TNFα reached their peak at 12 h after stress exposure. The apoptosis rate was highest at 6 h after WRS and was accompanied by the highest caspase-3 expression. In rats pretreated with EGF or 16,16 dm-PGE 2, a significant decrease in caspase-3 mRNA and upregulation of bcl-2 mRNA as observed as compared to vehicle controls. Caspase-1 inhibitor significantly reduced the number of stress lesions. We conclude that EGF and PGE 2 accelerate healing of stress-induced lesions due to the attenuation of apoptosis via upregulation of bcl-2 in gastric mucosa. Inhibitors of apoptosis accelerate healing of stress lesions and may be potentially effective agents in the healing of damaged gastric mucosa.
Read full abstract