Formulation of the problem. In the second part of the article, the geodynamic mode and the kinematic mechanism of destruction of the Dnieper–Donetsk Basin by tectonic movements of the Late Hercynian and Alpine stages of tectogenesis were studied. New results of tectonophysical studies of the structural–kinematic evolution of the Earth's crust of Dnieper–Donetsk Basin at the collision stage are presented. The subject of research is a complex of deformation structures that complicate the sedimentary cover in the transitional zone of with Donetsk Foldbelt. Review of previous publications and studies. Using instrumental definitions of tectonite vergence, data of reconstruction of stress fields and quantitative modeling of deformations, a original kinematic model of tectonic inversion of the Dnieper–Donetsk Basin was developed. Methods. Structural–kinematic analysis of the structural drawings of collisional deformation and tectonics structures was used for regional geotectonic studies. Results. Tectonic inversion of the Dnieper-Donetsk Basin and Donbass began at the Late Hercynian epoch as a result of collisional movements of the compression orogen on the outskirts of the Paleotethis. Tangential compression of the southwestern direction led to the formation of gentle tectonic faults in the sedimentary cover of the Western Donets Graben, along which a lattice of thrust faults was formed. For a set of extrusion of sedimentary rocks in the reverse–thrust mode from the axial super-compressed zone, tectonic transport of geomas took place in the direction of the zones of "geodynamic shadow" on the southern side. Collisional deformations of horizons by the mechanism of longitudinal bending of the layers caused the formation of linear uplift-folding in the northern part of the Graben, and echelons of scaly thrust covers in the southern. At the Mesozoic and Cenozoic epochs, in the mode of interference of the reverse–thrust and horizontal-strike-slip fields, the Hercynian thrust lattice and the near-fault uplift folds underwent collisional deformation with the formation of coulisse–jointed folded zones and echeloned thrust covers. Based on the kinematic model of tectonic inversion of the Western Donets Graben, the geodynamics of the formation of the transition zone between the Dnieper–Donets Basin and the Donetsk Foldbelt is reconstructed. These data are the basis for adjusting the regional schemes of tectonic and oil and gas geological zoning. Scientific novelty and practical significance. The grouping of the compression axes in the western part of the Donbass caused the formation of a gorst-like geoblock-stamp, under the pressure of which the dislocated geomasses were thrusting onto the syneclisic cover of the southeastern segment of the depression. In the Western Donetsk Graben, the allochthonous stratum formed the body of the tectonic wedging geomas segment. Along the main strike–slip faults, which form the "tectonic rails" of the invasion, geodynamic zones of displacement of geomas were formed, composed of en-echelon articulated upthrust-folds. In its foreland, at the ends of the main strike–slip faults, an advanced scaly compression fan was formed, and in the hinterland, folded sutures were formed on the roots of the thrust covers. The main result of the research is a fundamentally new kinematic model of tectonic inversion of the Dnieper-Donetsk Basin. The model provides that the deformations of the riftogenic structure within the Graben were carried out according to the kinematic mechanism of the formation of a transverse orocline protruding under the pressure of the tectonic geoblock-stamp of the Donetsk Foldbelt.
Read full abstract