Himalayan region has high concentrations of mountain glaciers. Large extent of this region is covered by seasonal snow during winter. Runoff generates from melting of these snow and glaciers is one of the important sources of water for the Himalayan Rivers. Glaciers and snowfields are distributed throughout the Himalayas and form a source of numerous streams. Due to steep slopes, all such streams have potential sites for hydropower generation. If this potential is fully utilized, it will help in generating power from environmentally friendly Run-of-River (RoR) hydropower stations. Considering these aspects, a stream flow simulation model was developed for small streams. This will help in estimation of average seasonal unrestricted hydropower potential of snow and glaciated streams for winter, summer, monsoon and autumn seasons. Information generated through remote sensing technique as glacier, permanent snow cover, seasonal snow cover, altitude of snow and glaciers were used in conjunction with daily maximum and minimum temperature, rainfall and discharge. The model was developed for Malana nala located in Parbati River basin near Kullu in Himachal Pradesh. It was validated at adjacent Tosh nala in the same basin. Seasonal runoff computed from the model is comparable with observed data for all seasons except Monsoon. Good results in autumn, winter and summer seasons demonstrates usefulness of runoff model to assess hydropower potential of snow and glaciated streams and therefore, the model was applied to ungauged Sorang Gad and Kirang Khad. In winter runoff was estimated as 1.8 and 1.69 cumecs for Kirang Khad and Sorang Gad, respectively. This is important, as viability of hydropower station depends upon winter stream runoff. These results suggest that the model is useful tool to assess initial estimate of hydropower potential for large number of snow and glaciated streams, for which no hydrological data is available.