In this study, a high step-up converter with a coupled-inductor is investigated. In the proposed strategy, a coupled inductor with a lower-voltage-rated switch is used for raising the voltage gain (whether the switch is turned on or turned off). Moreover, a passive regenerative snubber is utilized for absorbing the energy of stray inductance so that the switch duty cycle can be operated under a wide range, and the related voltage gain is higher than other coupled-inductor-based converters. In addition, all devices in this scheme also have voltage-clamped properties and their voltage stresses are relatively smaller than the output voltage. Thus, it can select low-voltage low-conduction-loss devices, and there are no reverse-recovery currents within the diodes in this circuit. Furthermore, the closed-loop control methodology is utilized in the proposed scheme to overcome the voltage drift problem of the power source under the load variations. As a result, the proposed converter topology can promote the voltage gain of a conventional boost converter with a single inductor, and deal with the problem of the leakage inductor and demagnetization of transformer for a coupled-inductor-based converter. Some experimental results via examples of a proton exchange membrane fuel cell (PEMFC) power source and a traditional battery are given to demonstrate the effectiveness of the proposed power conversion strategy.
Read full abstract