Studies on the suitability of various chemically prepared activated carbons (CPACs) like straw carbon (SC), sawdust carbon (SDC), dates nut carbon (DNC) and commercial activated carbon (CAC) for the removal of copper(II) ions by adsorption from simulated wastewater have been carried out under batch mode at 30 ± 1°C and the results are compared. The percentage removal of Cu(II) ions increased with a decrease in initial concentration, particle size and added electrolytes (ionic strength) and increased with an increase in contact time, dose of adsorbent and initial pH of the solution. The adsorption data were fitted with the Langmuir isotherm. The applicability of the first order kinetic equation viz. Lagergren equation was tested by correlation analysis. The adsorption process is concluded to be a spontaneous, first order reaction, occurring with increased randomness at the solid–liquid interface. Studies on the desorption of Cu2+-loaded activated carbons (ACs) were carried out with nitric acid (0.2–1 N). The possibility of reuse of the regenerated ACs in cycle (in cue-one after another) was tested. SC was found to be a suitable adsorbent alternative to CAC among CPACs for the removal of metal ions, in general, and Cu2+ ions, in particular.
Read full abstract