Abstract The Mineral King pendant is an ~15-km-long, northwest-striking assemblage of Permian to mid-Cretaceous metavolcanic and metasedimentary rocks that form a steeply dipping wall-rock screen between large mid-Cretaceous plutons of the Sierra Nevada batholith (California, USA). Pendant rocks are generally well layered and characterized by northwest-striking, steeply dipping, layer-parallel cleavage and flattening foliation and steeply northwest-plunging stretching lineation. Northwest-elongate lithologic units with well-developed parallel layering and an absence of prominent faults or shear zones suggests a degree of stratigraphic continuity. However, U-Pb zircon dating of felsic metavolcanic and volcanosedimentary rocks across the pendant indicates a complex pattern of structurally interleaved units with ages ranging from 277 Ma to 101 Ma. We utilize a compilation of 39 existing and new U-Pb zircon ages and four reported fossil localities to construct a revised geologic map of the Mineral King pendant that emphasizes age relationships rather than lithologic or stratigraphic correlations as in previous studies. We find that apparently coherent lithologic units are lensoidal and discontinuous and are cryptically interleaved at meter to kilometer scales. Along-strike facies changes and depositional unconformities combine with kilometer-scale tight folding and structural imbrication to create a complex map pattern with numerous discordant units. Discrete faults or major shear zones are not readily apparent in the pendant, although such structures are necessary to produce the structural complications revealed by our new mapping and U-Pb dating. We interpret the Mineral King pendant to be structurally imbricated by a combination of kilometer-scale tight to isoclinal folding and cryptic faulting, accentuated by, and eventually obscured by, pervasive flattening and vertical stretching that preceded and accompanied emplacement of the bounding mid-Cretaceous plutons. Deformation in the Mineral King pendant represents a significant episode of pure-shear-dominated transpression between ca. 115 Ma and 98 Ma that adds to growing evidence for a major mid-Cretaceous transpressional orogenic event affecting the western U.S. Cordillera.
Read full abstract