Brain amyloid-β (Aβ) accumulation is currently considered the main causative pathophysiological event in Alzheimer's disease (AD) (Hardy and Higgins, 1992; Karran et al., 2011). Importantly, this process is thought to precede the onset of AD clinical symptoms by more than two decades, indicating that early therapeutic strategies prior to symptomatology offer the best chance of success. In line with this, there is growing attention being paid to the concept of cognitive reserve (CR) (Stern et al., 1994; Stern, 2002). CR concept is based on extensive epidemiological data indicating that those with higher lifetime levels of social, physical, and cognitive engagement have a lower risk of developing dementia despite the presence of brain pathology (Fratiglioni et al., 2004; Nithianantharajah and Hannan, 2009). Recently, cognitive intervention (CI)—such as cognitive training (Bahar-Fuchs et al., 2013), cognitive stimulation (Woods et al., 2012), and cognitive rehabilitation (Clare et al., 2003)—has emerged as a potential non-pharmacological strategy for the treatment and prevention of AD (Gates and Sachdev, 2014). Although based upon distinct theoretical constructs, these CI strategies are frequently not distinguished in clinical trials.
Read full abstract