The experimental Optimized Pitch and Language (OPAL) strategy enhances coding of fundamental frequency (F0) information in the temporal envelope of electrical signals delivered to channels of a cochlear implant (CI). Previous studies with OPAL have explored performance on speech and lexical tone perception in Mandarin- and English-speaking CI recipients. However, it was not clear which cues to lexical tone (primary and/or secondary) were used by the Mandarin CI listeners. The primary aim of the present study was to investigate whether OPAL provides improved recognition of Mandarin lexical tones in both quiet and noisy environments compared with the Advanced Combination Encoder (ACE) strategy. A secondary aim was to investigate whether, and to what extent, removal of secondary (duration and intensity envelope) cues to lexical tone affected Mandarin tone perception. Thirty-two CI recipients with an average age of 24 (range 7 to 57) years were enrolled in the study. All recipients had at least 1 year of experience using ACE. Each subject attended two testing sessions, the first to measure baseline performance, and the second to evaluate the effect of strategy after provision of some take-home experience using OPAL. A minimum take-home duration of approximately 4 weeks was prescribed in which subjects were requested to use OPAL as much as possible but were allowed to also use ACE when needed. The evaluation tests included recognition of Mandarin lexical tones in quiet and in noise (signal to noise ratio [SNR] +5 dB) using naturally produced tones and duration/intensity envelope normalized versions of the tones; Mandarin sentence in adaptive noise; Mandarin monosyllabic and disyllabic word in quiet; a subset of Speech, Spatial, and Qualities of hearing questionnaire (SSQ, speech hearing scale); and subjective preference for strategy in quiet and noise. For both the natural and normalized lexical tone tests, mean scores for OPAL were significantly higher than ACE in quiet by 2.7 and 2.9%-points, respectively, and in noise by 7.4 and 7.2%-points, respectively. Monosyllabic word recognition in quiet using OPAL was significantly higher than ACE by approximately 7.5% points. Average SSQ ratings for OPAL were significantly higher than ACE by approximately 0.5 points on a 10-point scale. In quiet conditions, 14 subjects preferred OPAL, 7 expressed a preference for ACE, and 9 reported no preference. Compared with quiet, in noisy situations, there was a stronger preference for OPAL (19 recipients), a similar preference for ACE (7 recipients), while fewer expressed no preference. Average daily take-home use of ACE and OPAL was 4.9 and 7.1 hr, respectively. For Mandarin-speaking CI recipients, OPAL provided significant improvements to lexical tone perception for natural and normalized tones in quiet and noise, monosyllabic word recognition in quiet, and subjective ratings of speech intelligibility. Subjects accessed both primary and secondary cues to lexical tone for perception in quiet and noise conditions. The benefits of lexical tone recognition were attributed to enhanced F0 rate cues encoded by OPAL, especially in a noisy environment. The OPAL strategy was well accepted by many of the Mandarin-speaking CI recipients.