An endogenous transporter protein called albumin interacts with the Fc receptor to provide it with multiple substrate-binding domains, cell membrane receptor activation, and an extended circulating half-life. Albumin has the remarkable ability to bind with receptors viz. secreted protein acidic and rich in cysteine (SPARC) and scavenger protein-A (SR-A) that are overexpressed during rheumatoid arthritis (RA), enabling active targeting of the disease site instead of requiring specialized substrates to be added to the nanocarrier. RA, a chronic autoimmune illness, is characterized by the presence of a severe inflammatory response. RA patients have low serum albumin concentration, which signifies the high uptake of albumin at the inflammatory sites, giving a rationale to use albumin as a drug carrier for RA therapy. Albumin has the capacity for both passive and active targeting. It is an abundantly available protein in the bloodstream showing excellent cellular compatibility, degradability in biological tissues, nonantigenicity, and safety. There are three strategies of albumin mediated drug delivery as encapsulating therapeutics in albumin nanoparticles, chemically conjugating drugs with functional proteins, and albumin itself which is used as a targeting ligand to deliver drugs specifically to cells or tissues that express albumin-binding receptors. In the current review, an attempt has been made to highlight the significant evidence of albumin as a drug delivery carrier for the safe and effective management of RA. Evidence has been provided in the form of recent research advances, clinical trials, and patents. Additionally, this review will outline the prospective for the potential utilization of albumin as a drug vehicle for RA and suggest possible future avenues to provide the perspective for subsequent studies.