With rising demand for wood products and reduced wood harvesting due to the European Green Deal, alternative lignocellulosic materials for insulation are necessary. In this work, we manufactured reference particleboard from industrial particles and fifteen different board variants from alternative lignocellulosic plants material, i.e., five types of perennial plant biomass in three substitutions: 30, 50 and 75% of their share in the board with a nominal density of 250 kg/m3. Within the analysis of manufactured boards, the mechanical, chemical and thermal properties were investigated—internal bond, formaldehyde emissions, thermal insulation, heat transfer coefficient and thermal conductivity. In the case of thermal conductivity, the most promising results from a practical point of view (W/mK < 0.07) were obtained with Sida hermaphrodita and Miscanthus, achieving the best results at 50% substitution. The lowest formaldehyde emissions were recorded for boards with Panicum virgatum and Miscanthus, highlighting their positive environmental performance. In terms of mechanical properties, the highest internal bond was noticed in particleboards with a 30% substitution of Spartina pectinata and Miscanthus. Research findings confirm the potential of perennial plants as a sustainable source of raw materials for insulation panel manufacturing. Despite needing improvements in mechanical properties, most notably internal bond strength, these plants offer an ecologically responsible solution aligned with global construction trends, thus lessening reliance on traditional wood products. Thus, long-term benefits may be realized through the strategic combination of diverse raw materials within a single particleboard.
Read full abstract