A new type of responses called as periodic-chaotic motion is found by numerical simulations in a Duffing oscillator with a slowly periodically parametric excitation. The periodic-chaotic motion is an attractor, and simultaneously possesses the feature of periodic and chaotic oscillations, which is a new addition to the rich nonlinear motions of the Duffing system including equlibria, periodic responses, quasi-periodic oscillations and chaos. In the current slow-fast Duffing system, we find three new attractors in the form of periodic-chaotic motions. These are called the fixed-point chaotic attractor, the fixed-point strange nonchaotic attractor, and the critical behavior with the maximum Lyapunov exponent fluctuating around zero. The system periodically switches between one attractor with a fixed single-well potential and the other with time-varying two-well potentials in every period of excitation. This behavior is apparently the mechanism to generate the periodic-chaotic motion.