Recombinant herpesviruses can be used as oncolytic therapeutic agents and high packaging capacity vectors for delivering expression cassettes into the cell. Herpesvirus saimiri is a gamma-herpesvirus that normally infects squirrel monkeys but also has a unique ability to infect and immortalize human lymphocytes while allowing them to retain their mature phenotype and functional activity. Recombination of the Herpesvirus saimiri genome in permissive cells is impeded by its resistance to chemical transfection and electroporation. The aim of this study was to develop an effective method for incorporating expression cassettes into the genome of Herpesvirus saimiri without having to transfect a permissive cell culture. Transfected HEK-293T cells expressing glycoproteins of the measles virus vaccine strain were co-cultured with permissive OMK cells infected with Herpesvirus saimiri. Cell fusion and formation of syncytia stimulated recombination between the viral genome and the expression cassette; this allowed us to obtain a recombinant Herpesvirus saimiri variant without chemical transfection in permissive cells. The genetically modified virus expressed a selectable marker and retained its ability to persist in the cell in the latent state; it also caused immortalization of primary lymphoid cells. The proposed approach allows engineering recombinant Herpesvirus saimiri strains carrying a variety of expression cassettes in its genome.
Read full abstract