AbstractWe have fabricated strained Ge channel p-type metal oxide semiconductor field-effect transistors (p-MOSFETs) on Si1−xGex (x=0.7 to 0.9) virtual substrates. Capping the channel with a relaxed, epitaxial silicon layer eliminates the poor interface between silicon dioxide (SiO2) and pure Ge. The effects of the Si cap thickness, the strain in the Ge channel, and the thickness of the Ge channel on hole mobility enhancement were investigated. Optimized strained Ge p-MOSFETs show hole mobility enhancements of nearly 8 times that of co-processed bulk Si devices across a wide range of vertical field. These devices demonstrate that the high mobility holes in strained Ge can be utilized in a MOS device despite the need to cap the channel with a highly dislocated Si layer.