This article reports on a new method of monitoring nanoscale contacts in switches based on nanoelectromechanical systems, where the contact-mode switching characteristics can be recorded with the sensitive embedded piezoresistive (PZR) strain transducers. The devices are manufactured using state-of-the-art wafer-scale silicon-on-insulator technology featuring suspended silicon cantilevers and beams as switching elements and sub-100 nm thin silicon nanowires (SiNWs) as PZR transducers. Several different device configurations are studied, including mechanically ‘cross’-shaped (‘+’), coupled cantilever-SiNW structures, with and without local drain electrodes, and doubly clamped SiNW beams. Through detailed measurement and analysis, we demonstrate that the PZR transducers can enable detection of both mechanical and tunneling switching with multiple repeatable cycles. With the strong PZR effects in thin SiNWs, this type of device could be valuable especially for monitoring cold switching events, and when conventional direct readout of the switching events from the local gate or drain electrodes would not be efficient or sensitive, as nanoscale contacts may not be highly conductive, or may be degrading over time.
Read full abstract