Acetic acid bacteria (five strains of Acetobacter and five strains of Gluconobacter) were used for the biotransformation of different primary alcohols (2-chloropropanol and 2-phenylpropanol) and diols (1,3-butandiol, 1,4-nonandiol and 2,3-butandiol). Most of the tested strains efficiently oxidized the substrates. 2-Chloropropanol and 1,3-butandiol were oxidized with good rates and low enantioselectivity (enantiomeric excess=18–46% of the S-acid), while microbial oxidation of 2-phenylpropanol furnished ( S)-2-phenyl-1-propionic acid with enantiomeric excess (e.e.) >90% with 10 strains. The dehydrogenation of 2,3-butandiol was strongly dependent on the stereochemistry of the substrate; the meso form gave S-acetoin with all the tested strains, the only exception being a Gluconobacter strain. The formation of diacetyl was observed only by using R,R-2,3-butandiol with Acetobacter strains. Oxidation of 1,4-nonandiol gave γ-nonanoic lactone in one step, although with moderate enantioselectivity.