Abstract The assumptions of instrumental methodology for measuring dynamic loads of knitted barrier meshes were defined. A test stand was built, original in terms of both mechanical construction and electronic measuring system, connected to a computer data analysis system. Maximum values of dynamic forces in the mesh fastening strings were determined. The correctness of the strain gauges construction and measurement data transmission systems was confirmed. Tests of multidirectional resistance to dynamic loads in the mesh fastening strings were carried out. The experiment involved dropping a ball with a mass of 5 kg and a diameter of 10 cm, from a height of 1 m and 2 m onto the mesh surface. The potential impact energy equaled Ep1 = 49.05 J and Ep2 = 98.1 J. The tests showed that the highest force values were observed for meshes with square-shaped a-jour structure, and for mesh with diamond-shaped a-jour geometry the force values were lower. A symmetrical forces distribution was observed in all the strings. The highest forces were recorded in the middle strings and the lowest in the outer ones. The conducted tests confirmed the correctness of the adopted constructional solutions of test stand for identification of dynamic stress distribution in mesh fastening strings. The developed method is a useful verification tool for numerical analysis of mechanical properties of barrier meshes.