The forced vibration behaviors are examined for nonlocal strain gradient nanobeams with surface effects subjected to a moving harmonic load travelling with a constant velocity in terms of three beam models namely, the Euler-Bernoulli, Timoshenko and modified Timoshenko beam models. The modification for nonlocal strain gradient Timoshenko nanobeams is exerted to the constitutive equations by exclusion of the nonlocality in the shear constitutive relation. Some analytical closed-form solutions for three nonlocal strain gradient beam models with simply supported boundary conditions are derived by using the Galerkin discretization method in conjunction with the Laplace transform method. The effects of the three beam models, the nonlocal and material length scale parameters, the velocity and excitation frequency of the moving harmonic load on the dynamic behaviors of nanobeams are discussed in some detail. Specifically, the critical velocities are examined in some detail. Numerical results have shown that the aforementioned parameters are very important factors for determining the dynamic behavior of the nanobeams accurately.