This paper considers the basic principles of the strain analysis method based on the analysis of antitaxial regeneration fibrous fringes around linear rigid inclusions in a low-viscosity rock matrix. This method has been developed for pressure shadows composed of fibrous minerals, whose orientation is controlled by the major elongation direction rather than the orientation of rigid inclusions. This approach is applicable only for rocks exposed to uniform coaxial straining. The strain ellipse is calculated in two ways: for three variably oriented strain markers, it is calculated using Mohr’s circles, and for numerous strain markers by average body ellipse. The strain ellipsoid is calculated using the parameters of a few strain ellipses calculated with three and more non-parallel planes. This paper provides the data on the method testing in reference sites of Dora–Pil’ ore field in the Upper Indigirka district and Vangash area in the Yenisei Range. Regeneration fibrous fringes around fragments of fern fossils and linear rutile metacrystals were used as markers. The results of strain analysis obtained for the reference sites in the Upper Indigirka district made it possible to describe the signs of variable strain stages of developing strike-slip zones making up the Adycha–Taryn Fault Zone. Sublatitudinal ore-bearing strike-slip zones are characterized by a subvertical orientation of the elongation axes X of elongated strain ellipsoids, which are subperpendicular to quartz–carbonate veins and slope kink zones. NW-trending strike-slip zones are characterized by subhorizontal orientation of the Z shortening axes of flattened strain ellipsoids, which are subparallel to the normals of quartz–carbonate veins and veinlets. The results of strain analysis obtained for reference sites in the Vangash area made it possible to describe the thrust strain environment following the metamorphism stage and to reveal specific features in the formation of the strain textures of ore-bearing rocks based on their rheological properties.
Read full abstract