In the present paper, three-dimensional numerical simulations were carried out to examine the influence of the overlap ratio between the two straight edges on the advancing and returning blades of the novel V-shaped rotor blade profiles using the sliding mesh technique. The performance parameters were computed with respect to the tip speed ratio. The findings show that the coefficient of torque and power for the novel V-shaped turbine blade is maximum for the zero-overlap ratio compared to the turbine blade, with an overlap ratio ranging from 0.05 to 0.3. The blade profiles' flow field was visualized at different angular positions, and various significant zones developed during the turbine blade rotation were captured and analyzed. The new overlapping jet developed between the two straight edges of the advancing and returning blade profiles as the overlap ratio varies from 0.05 to 0.3. Therefore, the turbine's performance is reduced due to the development of an overlap jet as it travels parallel to the straight edges of the blade profile and does not impact the rear side of the returning blade profile.
Read full abstract