Fluid flow in concentric or eccentric annular ducts have been studied for decades due to large application in medical sciences and engineering areas. This paper aims to study fully developed fluid flow in straight ducts of concentric annular geometries (circular with circular core, elliptical with circular core, elliptical with elliptical core, and circular with elliptical core) using the Galerkin-based Integral method (GBI method). The choice of method was due to the fact that in the literature it is not applied in ducts of cross-sections of the annular shape with variations between circular and elliptical. Results of different hydrodynamics parameters such as velocity distribution, Hagenbach factor, Poiseuille number, and hydrodynamic entrance length, are presented and analyzed. In different cases, the predicted hydrodynamic parameters are compared with results reported in the literature and a good concordance was obtained.