Zeugodacus tau (Walker) is an invasive pest. The sterile insect technique is an environment-friendly method for pest control. Understanding the mechanism of sex determination will contribute to improving efficiency of this technique. In this study, we identified the transformer (tra) gene in Z. tau. One female-specific and two male-specific isoforms of tra were found in Z. tau, and the male-specific splicing pattern of tra was found to occur 5 h after egg laying. We performed transcriptome sequencing at 1 h (E1), 5 h (E5), and 9 h (E9) after egg laying and obtained high-quality transcriptome libraries of early embryo development. We identified 13297 and 11713 differentially expressed genes (DEGs) from E5 versus E1 and E9 versus E1 comparisons, respectively. To explore the potential functions of the DEGs during embryonic development, Gene Ontology, Clusters of Orthologous Groups of proteins, and Kyoto Encyclopedia of Genes and Genomes analyses were performed. Twenty-six genes potentially involved in sex determination or differentiation, including Maleness-on-the-Y (MoY), were identified in Z. tau. To verify the transcriptome results, 15 genes were selected for quantitative real-time PCR validation. The results were consistent with the transcriptome sequencing results. Moreover, U2 small nuclear riboprotein auxiliary factor (U2AF-50), female lethal d (fl(2)d), and virilizer (vir) were highly expressed at E5, indicating that they may be related to the sex-specific splicing of tra. Further functional analysis is needed to confirm this speculation. Our data provide an insight into the mechanism underlying sex determination and differentiation in tephritid species.