Biomass burning is a primary source of atmospheric nitrogen oxide (NOx), however, the lack of isotopic fingerprints from biomass burning limits their use in tracing atmospheric nitrate (NO3−) and NOx. A total of 25 biomass fuels from 10 provinces and regions in China were collected, and the δ15N values of biomass fuels (δ15N-biomass) and δ15N-NOx values of biomass burning (δ15N-NOx values of BB, open burning, and rural cooking stove burning) were determined. The δ15N-NOx values of open burning and rural cooking stove burning ranged from −0.8 ‰ to 11.6 ‰ and 0.8 ‰ to 9.5 ‰, respectively, indicating a significant linear relation with δ15N-biomass. Based on the measured δ15N-NOx values of BB and biomass burning emission inventory data, the δ15N-NOx values of BB in different provinces and regions of China were calculated using the δ15N-NOx model, with a mean value of 5.0 ± 1.8 ‰. The spatial variations in the estimated δ15N-NOx values of BB in China were mainly controlled by the differences in the δ15N-NOx values and the proportions of NOx emissions from various straw burning activities in provinces and regions of China. Furthermore, by using the combined local emissions of biomass burning with regional transportations of NOx based on air-mass backward trajectories, we established an improved δ15N-NOx model and obtained more accurate δ15N-NOx values of BB in regions (2.3 ‰ to 8.4 ‰). By utilising the reported δ15N-NOx values of precipitation and particulate matter from 21 cities in China and the more accurate δ15N-NOx values of BB, the NOx contributions from four sources (mobile sources, coal combustion, biomass burning, and microbial N cycle) at the national scale were estimated using a Bayesian model. The significant contributions of biomass burning (20.9 % to 44.3 %) to NOx emissions were revealed, which is vital for controlling NOx emissions in China.
Read full abstract