Abstract The objective of this paper is to employ machine learning (ML) and deep learning (DL) techniques to obtain, from input data (storm features) available in or derived from the HURDAT2 database, models capable of simulating important hurricane properties (e.g., landfall location and wind speed) consistent with historical records. In pursuit of this objective, a trajectory model providing the storm center in terms of longitude and latitude and intensity models providing the central pressure and maximum 1-min wind speed at 10-m elevation were created. The trajectory and intensity models are coupled and must be advanced together, 6 h at a time, as the features that serve as inputs to the models at any given step depend on predictions at the previous time steps. Once a synthetic storm database is generated, properties of interest, such as the frequencies of large wind speeds, may be extracted from any part of the simulation domain. The coupling of the trajectory and intensity models obviates the need for an intensity decay model inland of the coastline. Prediction results are compared with historical data, and the efficacy of the storm simulation models is evaluated at four sites: New Orleans, Louisiana; Miami, Florida; Cape Hatteras, North Carolina; and Boston, Massachusetts.
Read full abstract