At the Heidelberg Ion-Beam Therapy Center, the track structure of carbon ions of therapeutic energy after penetrating layers of simulated tissue was investigated for the first time. Measurements were conducted with carbon ion beams of different energies and polymethyl methacrylate (PMMA) absorbers of different thicknesses to realize different depths in the phantom along the pristine Bragg peak. Ionization cluster size (ICS) distributions resulting from the mixed radiation field behind the PMMA absorbers were measured using an ion-counting nanodosimeter. Two different measurements were carried out: (i) variation of the PMMA absorber thickness with constant carbon ion beam energy and (ii) combined variation of PMMA absorber thickness and carbon ion beam energy such that the kinetic energy of the carbon ions in the target volume is constant. The data analysis revealed unexpectedly high mean ICS values compared to stopping power calculations and the data measured at lower energies in earlier work. This suggests that in the measurements the carbon ion kinetic energies behind the PMMA absorber may have deviated considerably from the expected values obtained by the calculations. In addition, the results indicate the presence of a marked contribution of nuclear fragments to the measured ICS distributions, especially if the carbon ion does not cross the target volume.
Read full abstract