The distribution of single Stop Signal Reaction Times (SSRT) in the stop signal task (SST) has been modelled with two general methods: a nonparametric method by Hans Colonius (1990) and a Bayesian parametric method by Dora Matzke, Gordon Logan and colleagues (2013). These methods assume an equal impact of the preceding trial type (go/stop) in the SST trials on the SSRT distributional estimation without addressing the relaxed assumption. This study presents the required model by considering a two-state mixture model for the SSRT distribution. It then compares the Bayesian parametric single SSRT and mixture SSRT distributions in the usual stochastic order at the individual and the population level under ex-Gaussian (ExG) distributional format. It shows that compared to a single SSRT distribution, the mixture SSRT distribution is more varied, more positively skewed, more leptokurtic and larger in stochastic order. The size of the results’ disparities also depends on the choice of weights in the mixture SSRT distribution. This study confirms that mixture SSRT indices as a constant or distribution are significantly larger than their single SSRT counterparts in the related order. This result offers a vital improvement in the SSRT estimations.
Read full abstract