Tactile sensory information obtained from oneself or others may provide a calming effect and has been shown to enhance participants' motor control. The extent to which these touch activities may support motor inhibition and the related electrophysiological mechanisms remain unknown. Here, we investigated these effects in twenty healthy volunteers via electroencephalography under 3 touching conditions (self-touch, other-touch, and no-touch) during a stop-signal task. We found that both the self-touch and other-touch conditions resulted in better stopping accuracy and lower stop-signal reaction times than the no-touch condition. Additionally, these 2 touch conditions elicited larger N2 and P3 responses during successful inhibition of planned finger movements. Time-varying network analysis based on electroencephalography was further used to explore the differences in brain networks during conflict monitoring substages under different touch conditions. A top-down projection from the frontal cortex (Fz) to the parietal and occipital cortices was observed along with increased functional connectivity efficiency under touch conditions. These results indicate that tactile information may enhance neural processing efficiency in the human brain by eliciting larger event-related potential components and promoting information processing in the brain network during conflict monitoring processes, thereby contributing to the reactive inhibitory component of motor inhibition.
Read full abstract