This article addresses a means to improve hydraulic fracturing operations by measuring the perforation effectiveness on a stage-by-stage basis before the hydraulic fracturing process begins. Observations lead to the conclusion that pre-frac measurements provide meaningful insight about well-to-reservoir opening, allowing operators to identify the difficult-to-treat stages before the treatment begins. Based on the results of a case study from a North American unconventional basin, the limitations and conditions for employing pre-frac measurements are discussed. Background Often, perforation operations fail to initiate a well-established hydraulic communication between the wellbore and the reservoir rock. When hydraulic fracturing operations begin, a lack of wellbore to reservoir connectivity may cause unexpected difficulties such as unusually high pumping pressures, difficulty injecting the design volumes of fluid and proppant, and/or the inability to achieve design pumping rate or screenouts. The hydraulic fracturing industry is increasingly looking for an efficient, nonintrusive method for identifying poor wellbore to reservoir connectivity. Currently, step-rate tests are commonly used (Massaras et al. 2007) to give the operator an estimate of open perforations taking fluid, as well as frictional losses within the wellbore and near-field region. However, these tests are costly, time-consuming, and rarely accurately confirm the number of poor perforations (Cramer et al. 2019). Fiber-optic technologies can improve these uncertainties but are costly and susceptible to damage during installation and/or operation. How the Method Works Low-frequency hydraulic tube waves, or Stoneley waves (Stoneley 1924), are induced at the surface by equipment connected to the wellhead. Tube waves travel rapidly through the fluid within the wellbore and reflect by any changes within the hydraulically connected parts of the wellbore. In this case, the reflection off the bottom of the well influences the tube-wave properties - dispersion and attenuation of the normal modes (Hsu, Kostek, and Johnson 1997), depending on the condition and number of the perforations, the quality of their connection with the near-field region, and the quality of the near-field region itself (e.g., a region already naturally fractured) [Dunham et al. 2017].