BackgroundDistinguishing between non-severe and severe dengue is crucial for timely intervention and reducing morbidity and mortality. World Health Organization (WHO)-recommended warning signs offer a practical approach for clinicians but have limited sensitivity and specificity. This study aims to evaluate machine learning (ML) model performance compared to WHO-recommended warning signs in predicting severe dengue among laboratory-confirmed cases in Puerto Rico.MethodsWe analyzed data from Puerto Rico’s Sentinel Enhanced Dengue Surveillance System (May 2012–August 2024), using 40 clinical, demographic, and laboratory variables. Nine ML models, including Decision Trees, K-Nearest Neighbors, Naïve Bayes, Support Vector Machines, Artificial Neural Networks, AdaBoost, CatBoost, LightGBM, and XGBoost, were trained using fivefold cross-validation and evaluated with area under the receiver operating characteristic curve (AUC-ROC), sensitivity, and specificity. A subanalysis excluded hemoconcentration and leukopenia to assess performance in resource-limited settings. An AUC-ROC value of 0.5 indicates no discriminative power, while values closer to 1.0 reflect better performance.ResultsAmong the 1708 laboratory-confirmed dengue cases, 24.3% were classified as severe. Gradient boosting algorithms achieved the highest predictive performance, with an AUC-ROC of 97.1% (95% CI: 96.0–98.3%) for CatBoost using the full 40-variable feature set. Feature importance analysis identified hemoconcentration (≥ 20% increase during illness or ≥ 20% above baseline for age and sex), leukopenia (white blood cell count < 4000/mm3), and timing of presentation at 4–6 days post-symptom onset as key predictors. When excluding hemoconcentration and leukopenia, the CatBoost AUC-ROC was 96.7% (95% CI: 95.5–98.0%), demonstrating minimal reduction in performance. Individual warning signs like abdominal pain and restlessness had sensitivities of 79.0% and 64.6%, but lower specificities of 48.4% and 59.1%, respectively. Combining ≥ 3 warning signs improved specificity (80.9%) while maintaining moderate sensitivity (78.6%), resulting in an AUC-ROC of 74.0%.ConclusionsML models, especially gradient boosting algorithms, outperformed traditional warning signs in predicting severe dengue. Integrating these models into clinical decision-support tools could help clinicians better identify high-risk patients, guiding timely interventions like hospitalization, closer monitoring, or the administration of intravenous fluids. The subanalysis excluding hemoconcentration confirmed the models’ applicability in resource-limited settings, where access to laboratory data may be limited.Graphical
Read full abstract