A one-pot, two-step process was developed for the preparation of pyrrole compounds from 2,5-dimethylfuran. The first step was the acid-catalyzed ring-opening reaction of 2,5-dimethylfuran (DF), leading to the formation of 2,5-hexanedione (HD). A stoichiometric amount of water and a sub-stoichiometric amount of sulfuric acid were used by heating at 50 °C for 24 h. Chemically pure HD was isolated, with a quantitative yield (up to 95%), as revealed by 1H-NMR, 13C-NMR, and GC-MS analyses. In the second step, HD was used as the starting material for the synthesis of pyrrole compounds via the Paal-Knorr reaction. Various primary amines were used in stoichiometric amounts. 1H-NMR, 13C-NMR, ESI-Mass, and GC-Mass analyses confirmed that pyrrole compounds were prepared with very good/excellent yields (80-95%), with water as the only co-product. A further purification step was not necessary. The process was characterized by a very high carbon efficiency, up to 80%, and an E-factor down to 0.128, whereas the typical E-factor for fine chemicals is between 5 and 50. Water, a co-product of the second step, can trigger the first step and therefore make the whole process circular. Thus, this synthetic pathway appears to be in line with the requirements of a sustainable chemical process. A pyrrole compound bearing an SH group (SHP) was used for the functionalization of a furnace carbon black (CB). The functionalized CB (CB/SHP) was utilized in place of silica, resulting in a 15% mass reduction of reinforcing filler, in an elastomeric composite based on poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis. Compared to the silica-based composite, a reduction in the Payne effect of about 25% and an increase in the dynamic rigidity (E' at 70 °C) of about 25% were obtained with CB/SHP.
Read full abstract