Abstract

Abstract New liquid branched poly(methylvinylborosiloxanes) (br-PMVBS) of random structure were synthesized in three steps. By reacting boric acid with an excess of dimethyldichlorosilane (Me2SiCl2) in dry ether a “borosiloxane precursor”: tris(chlorodimethylsilyl) borate B(OSiMe2Cl)3 was prepared. In the second step of synthesis ether solution of B(OSiMe2Cl)3 was added to a mixture of appropriate organic chlorosilanes (Me2SiCl2, MeViSiCl2, MeSiCl3, and Me3SiCl) and all reagents were reacted with stoichiometric amounts of water, in the presence of pyridine (as an acceptor of HCl), in dry ether, at low temperature (usually at -10 to 0 C). In order to fully react (“to block”) trace silanol groups, reactions of intermediate PMVBS with additional batches of Me3SiCl were carried out in the third step, C5H5N·HCl was filtered off and washed with a dry ether. The solvent was distilled off from filtrates and low molecular weight siloxane oligomers were removed by a vacuum distillation at 130-150 C. Chemical structures of br-PMVBS were confirmed by elemental analysis and spectroscopic methods (FTIR, emission atomic spectroscopy ICP-AES, and NMR: 1H, 29Si and 11B). On the basis of analysis of their 29Si-NMR spectra the microstructure of polysiloxane chains was proposed. The prepared br-PMVBS had in their structures: triple branching borosiloxane units: BO1.5 and in some cases methylsiloxane moiety CH3SiO1.5 (T). They contained linkages: Si-O-Si, Si-O-B, vinyl(methyl)siloxane functional groups (CH2=CH)MeSiO (Dvi), dimethylsiloxane mers (CH3)2SiO (D), and non-reactive trimethylsiloxy terminal groups (CH3)3SiO0.5 (M), but they did not have: hydroxyl functional groups: Si-OH and B-OH, and sensitive to water B-O-B linkages. Molecular weights of br-PMVBS (Mn = 1500-3300 g/mol; Mw = 3800-7400 g/mol) and their polydispersity (Mw/Mn = 2.0-2.5) were determined by a size exclusion chromatography (SEC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.