Abstract This paper addresses how large aggregations of fish found on many seamounts are sustained. We used a generic seamount ecosystem model from the Northeast Atlantic to examine the impact of a potential increase of local primary production on higher trophic levels, to quantify the immigration of allochthonous micronekton that would be required to maintain a “typical” seamount community, and to quantify if the necessary immigration ratios could be supported by local oceanographic conditions. Our simulation predictions indicate a lack of autochthonous resources in the system to support large amounts of seamount aggregating fish. In other words, autochthonous seamount production may be responsible for sustaining only a small amount of its total biomass. Additionally, our study supports the idea that enhancement of primary productivity also cannot sustain large aggregations of seamount fish. Our seamount model, which took into account high abundances of fish, marine mammals, seabirds and tuna, required a total immigration of allochthonous micronekton of 95.2 t km−2 yr−1 less than the potential available biomass after considering the immigration of prey based upon average current velocities and prey standing stocks in oceanic waters. Our model predicted that the horizontal flux of prey would be sufficient to sustain the rich communities living on seamounts.
Read full abstract