Pain is one of the most important yet poorly understood complaints in heritable connective tissue disorders (HCTDs) caused by monogenic defects in extracellular matrix molecules. This is particularly the case for the Ehlers-Danlos syndrome (EDS), paradigm collagen-related disorders. This study aimed to identify the pain signature and somatosensory characteristics in the rare classical type of EDS (cEDS) caused by defects in type V or rarely type I collagen. We used static and dynamic quantitative sensory testing and validated questionnaires in 19 individuals with cEDS and 19 matched controls. Individuals with cEDS reported clinically relevant pain/discomfort (Visual Analogue Scale ≥5/10 in 32% for average pain intensity the past month) and worse health-related quality of life. An altered somatosensory profile was found in the cEDS group with higher (P = .04) detection thresholds for vibration stimuli at the lower limb, indicating hypoesthesia, reduced thermal sensitivity with more (P < .001) paradoxical thermal sensations (PTSs), and hyperalgesia with lower pain thresholds to mechanical (P < .001) stimuli at both the upper and lower limbs and cold (P = .005) stimulation at the lower limb. Using a parallel conditioned pain modulation paradigm, the cEDS group showed significantly smaller antinociceptive responses (P-value .005–.046) suggestive of impaired endogenous pain modulation. In conclusion, individuals with cEDS report chronic pain and worse health-related quality of life and present altered somatosensory perception. This study is the first to systematically investigate pain and somatosensory characteristics in a genetically defined HCTD and provides interesting insights into the possible role of the ECM in the development and persistence of pain. PerspectiveChronic pain compromises the quality of life in individuals with cEDS. Moreover, an altered somatosensory perception was found in the cEDS group with hypoesthesia for vibration stimuli, more PTSs, hyperalgesia for pressure stimuli, and impaired pain modulation.