A full-color colorimetric humidity sensor with high brightness is proposed by using a hetero-structured dielectric film in a metal-insulator-metal (MIM) resonator. A humidity-responsive polymer is designed to graft on top of a metal-organic frameworks (MOFs) thin film (MOFs-Polymer) as insulator layer in the resonator. Programmable tuning of reflected color is achieved by controlling the polymer thicknesses, and finite difference time domain simulation of light-matter interactions at subwavelength scales proves the dependence of the reflected wavelength on dielectric layer thickness of the resonator. Vivid full-color changing is realized during tracking humidity process due to swelling of the stimuli-responsive polymer. Ultrafast response (≈0.75 s) is achieved for tracking trace H2O from H2O/methanol mixture, which is ≈104 faster than that of the pure polymer-based MIM resonator. Meanwhile, the study observes significant spectral redshift because the porous MOFs film facilitates the preconcentration of external stimulus and improves the detection sensitivity of the resonator. Further, double-channel anti-counterfeiting multiplexing imaging is devised on the MIM resonator by photomask technology. Patterned encoding for security label is achieved on the MIM resonator by engineering humidity-tunable pixels of Au/MOFs-Polymer/Au and humidity-invalid pixels of Au/MOFs/Au.