The role of thermal fluctuations on the stimulated Raman backscattering instability is investigated by means of Vlasov and particle-in-cell (PIC) simulations in a regime of strong linear Landau damping of the Langmuir wave. The instability is initially convective and amplifies thermal noise, leading to a low-amplitude back-scattered laser sideband. Linear Landau damping of the Langmuir sideband modifies and flattens the electron velocity distribution function at the resonant velocity, leading to a gradual decrease in the Landau damping rate and an increase in the convective amplification. The Langmuir wave traps electrons resulting in a rapid nonlinear absolute instability and large amplitude flashes of backscattered light off large amplitude Langmuir waves with trapped electrons, leading to the production of hot electrons. Conditions for simulating realistic thermal noise with Vlasov and PIC simulations are discussed and defined.