A series of novel benzo[1,2-b:4,5-b′]dithiophene (BDT)-based conjugated polymers were synthesized using a Stille cross-coupling reaction. These polymers contained dithienyl thieno[3,4-c]pyrrole-4,6-dione (DTTPD) as an acceptor. Alkylthienylenevinylene thiophene side groups were introduced into the BDT units, and the solubility, absorption spectra, energy levels, charge transport, blend film morphology, and photovoltaic properties of the resulting polymer (poly[4,8-bis{2,2′-(5-ethylhexyl)thienylenevinylenethiophene}benzo[1,2-b;3,4-b]dithiophene-2,6-diyl-alt-1,3-di(thien-5′-yl)-5-octyldodecyl[3,4-c]pyrrole-4,6-dione-2,2′-diyl], PBDTTVT-DTTPD) were investigated. In addition, an alkylthienyl-substituted BDT-based polymer (poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-1,3-di(thien-5′-yl)-5-octyldodecyl[3,4-c]pyrrole-4,6-dione-2,2′-diyl], PBDTT-DTTPD) was synthesized to compare the optoelectronic and photovoltaic properties of the polymers. The weight-averaged molecular ...
Read full abstract