Simple SummaryControl of Asian citrus psyllid (Diaphorina citri), a vector of Candidatus liberibacter asiaticus (CLas), contributes to management of citrus greening disease (huanglongbing). We developed two prototypes of a multimodal attract-and-kill (AK) device with specific elements of color, attractant, phagostimulant, ultraviolet (UV) reflectant, and toxicant. Key sensory stimuli comprising the AK ingredients were identified in our current and previous research studies and incorporated into a yellow, slow-release wax matrix (SPLAT). This formulation was applied directly to the surface of yellow cylinders, or to corrugated plastic cards housed within perforated cylinders. Psyllids landing on the devices attempted to feed from the wax matrix, became intoxicated, died, and fell from device surfaces. Our laboratory and field experiments showed that AK devices attracted and killed significantly more adult D. citri than ordinary yellow sticky cards and remained fully active over a period of 12 weeks. Effective use of attract-and-kill for management of D. citri could reduce need for broad-spectrum insecticide sprays and encourage biological control as part of an integrated approach to huanglongbing (HLB) management in citrus.Phytophagous insects, including Asian citrus psyllids (Diaphorina citri Kuwayama), use multiple sensory modalities (vision, olfaction, and gustation,) to locate and accept host plants. We explored incorporation of several sensory cues into a multi-modal attract-and-kill device (AK device) using a three-dimensional shape to increase visibility, as well as elements of color, attractant, phagostimulant, UV reflectant, and toxicant. Attraction of adult D. citri to the device was mediated by a combination of a highly reflective yellow cylinder, a UV reflectant compound (magnesium oxide), and an odorant blend as a short-range attractant. The device surface was coated with a slow-release wax matrix (SPLAT™) augmented with a phagostimulant consisting of a 3-component blend (formic acid, acetic acid, and para-cymene) and an insecticide (β-cyfluthrin). Psyllids landing on the device attempted to feed from the wax matrix, became intoxicated, died, and fell from the device. The device remained fully active over a period of 12 weeks partly because dead psyllids or nontargets did not adhere to the surface as occurs on adhesive yellow sticky cards, the industry standard. Laboratory and field assays showed that the device attracted and killed significantly more adult D. citri than ordinary yellow sticky cards. This device or a future iteration based on the design elements of this device is expected to contribute to sustainable and environmentally appropriate management of D. citri by exploiting the psyllid’s innate behavioral responses to visual, olfactory, and gustatory stimuli.
Read full abstract