Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells. We have previously shown that mutant CCUG repeats reduce CNBP protein in DM2 patients. Reducing Cnbp in Cnbp KO mouse model causes late skeletal muscle atrophy. In this study, we examined if the reduction of Cnbp affects the Central Nervous System (CNS). MRI and DTI analyses showed that total brain volume and grey matter are reduced in Cnbp KO mice, while mean, radial and axonal brain diffusivity is increased. The morphological changes in the brains of Cnbp KO mice are accompanied by reduced stereotypic behavior, anxiety and neuromotor defects. These findings suggest that the reduction of CNBP contributes to CNS pathology in DM2. Since CNBP stability is regulated by pAMPK-dependent phosphorylation, we examined protein levels of pAMPK in DM2 cells and found that the active pAMPK is reduced in DM2. Interaction of CNBP with pAMPK and stability of CNBP protein are also decreased in DM2. Our data show that a small molecule AMPK activator A769662 corrects CNBP stability and normalizes CNBP targets in DM2 fibroblasts. Thus, activators of AMPK could potentially be developed as therapeutics to correct CNBP and reduce muscle and brain atrophies in DM2.
Read full abstract