Chiral organic pollutants, including pesticides, herbicides, medicines, flame retardants, and polycyclic musk, represent a significant threat to both the environment and human health. The presence of asymmetric centers in the structure of chiral pesticides introduces stereoisomers with distinct distributions, fates, biomagnification capacities, and cytotoxicities. In aquatic environments, pesticides, as persistent/pseudo-persistent compounds, have been detected in substantial quantities, posing severe risks to non-target species and, ultimately, public health through water supply and food exposures. In response to this environmental challenge, stereoselective analytical methods have gained prominence for the identification of pesticide/drug enantiomers in recent years. This review examines the environmental impact of chiral pesticides, emphasizing the distinct biological activities and distribution patterns of their stereoisomers. By highlighting the advancements in liquid chromatography for enantiomeric analysis, the review aims to underscore the urgent need for a comprehensive understanding of these pollutants to facilitate informed remediation strategies and ensure the safer dispersal of chiral organic pollutants in the environment, thereby addressing the potential risks they pose to ecosystems and human health. Future research should focus on developing sustainable and efficient methodologies for the precise analysis of stereoisomers in complex matrices, particularly in sewage water, emphasizing the importance of sewage processing plants in ensuring water quality.
Read full abstract