Abstract
Carbonyl groups that bear an α stereocenter are commonly found in bioactive compounds, and intense effort has therefore been dedicated to the pursuit of stereoselective methods for constructing this motif. While the chiral auxiliary-enabled coupling of enolates with alkyl electrophiles represented groundbreaking progress in addressing this challenge, the next advance in the evolution of this enolate-alkylation approach would be to use a chiral catalyst to control stereochemistry. Herein we describe the achievement of this objective, demonstrating that a nickel catalyst can accomplish enantioselective intermolecular alkylations of racemic Reformatsky reagents with unactivated electrophiles; the resulting α-alkylated carbonyl compounds can be converted in one additional step into a diverse array of ubiquitous families of chiral molecules. Applying a broad spectrum of mechanistic tools, we have gained insight into key intermediates (including the alkylnickel(II) resting state) and elementary steps of the catalytic cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.