Highlights A real time stereo vision controlled variable rate sprayer for specialty crops was developed. The stereo vision system of the sprayer detected outdoor trees with similar canopy profiles under travel speeds ranging from 3.2 to 8 km h-1. Canopy volume measurements of the sprayer were impacted by lateral distances between the sprayer and the tree center and travel speeds. The sprayer required less than 200 ms from tree canopy detection to spray decisions. The sprayer achieved spray volume reductions from 72.6% to 80.5% compared to constant rate spray application. Abstract. A real time variable rate sprayer controlled by a stereo vision system was developed to increase the accuracy of spray applications and reduce the use of crop protection products. The sprayer was designed to detect tree canopies and calculate its volume using depth images from the stereo vision system, and discharge corresponding spray volumes every 200 ms through the embedded software in the graphical user interface. The sprayer was evaluated in an apple orchard at different travel speeds (3.2 to 8.0 km h-1) for its performance in detecting canopy and measuring its volume. In addition, spray volume, deposition, and coverage of the variable rate application of the sprayer were evaluated against a constant rate application. Test results showed that the sprayer detected visually similar tree canopies during the evaluations, although its canopy volume measurements deviated from manually measured canopy volume from 0.11 to 0.83 m3 due to lateral position changes of the sprayer. The sprayer adjusted duty cycles of pulse width modulated valves to accurately spray the intended volume for detected canopies (0.073 to 0.083 L m-3) and only used spray volumes of 19.5% to 26.7% compared to a constant rate spray application (338 L ha-1). The constant rate spray application generally had more spray deposition and coverage in tree canopies than the variable rate sprayer, as expected since its spray volume was approximately 3.7 times higher. However, the mean spray depositions from the constant rate spray application were significantly varied (p=0.05) by tree sizes, while the variable rate spray application achieved statistically equivalent mean spray depositions regardless of tree sizes. The stereo vision controlled sprayer offers a cost-effective real-time variable rate spray option for growers with the potential to perform other tasks by using image processing algorithms while applying crop protection products. Keywords: Automation, Canopy volume, Crop protection, Depth image, Orchard, Precision agriculture, Real-time application.