Abstract

In this paper, we present a graphics processing unit (GPU)-based matching technique for the purpose of fast feature matching between different images. The scale invariant feature transform algorithm developed by Lowe for various feature matching applications, such as stereo vision and object recognition, is computationally intensive. To address this problem, we propose a matching technique optimized for GPUs to perform computations in less time. We optimize GPUs for fast computation of keypoints to make our system quick and efficient. The proposed method uses a self-organizing map feature matching technique to perform efficient matching between the different images. The experiments are performed on various image sets to examine the performance of the system under varying conditions, such as image rotation, scaling, and blurring. The experimental results show that the proposed algorithm outperforms the existing feature matching methods, resulting in fast feature matching due to the optimization of the GPU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.