This paper integrates L1-norm structural risk minimization with L1-norm approximation error to develop a new optimization framework for solving the parameters of sparse kernel regression models, addressing the challenges posed by complex model structures, over-fitting, and limited modeling accuracy in traditional nonlinear system modeling. The first L1-norm regulates the complexity of the model structure to maintain its sparsity, while another L1-norm is essential for ensuring modeling accuracy. In the optimization of support vector regression (SVR), the L2-norm structural risk is converted to an L1-norm framework through the condition of non-negative Lagrange multipliers. Furthermore, L1-norm optimization for modeling accuracy is attained by minimizing the maximum approximation error. The integrated L1-norm of structural risk and approximation errors creates a new, simplified optimization problem that is solved using linear programming (LP) instead of the more complex quadratic programming (QP). The proposed sparse kernel regression model has the following notable features: (1) it is solved through relatively simple LP; (2) it effectively balances the trade-off between model complexity and modeling accuracy; and (3) the solution is globally optimal rather than just locally optimal. In our three experiments, the sparsity metrics of SVs% were 2.67%, 1.40%, and 0.8%, with test RMSE values of 0.0667, 0.0701, 0.0614 (sinusoidal signal), and 0.0431 (step signal), respectively. This demonstrates the balance between sparsity and modeling accuracy.
Read full abstract