One way to improve exercise performance and protect heart health is the extended synchronization of the stepping with the diastolic phase of the cardiac cycle. Cardiac-locomotor coupling (CLC) happens when the step rate (SR) equals the heart rate (HR). The extent of CLC in daily life is unknown. This study aims to analyze spontaneous occurrences of CLC during daily activities. A retrospective analysis of daily life recordings from a wrist-worn sensor was undertaken (PMData, N = 16, 5months duration). The deviation between HR and SR was used to define CLC (deviation ≤ 1%) and weak CLC (1%< deviation ≤ 10%). The occurrence and the probability of CLC during everyday life were computed from the recordings. The CLC occurrences were stratified depending on the duration and intensity of the physical activity. Finally, a Monte Carlo simulation was run to evaluate the probability of random occurrences of CLC vs. the observed recordings. Participants couple for 5% and weakly couple for 35% of the observational period. The ratio of 1:1 between HR and SR is the dominating occurrence across the study population and this overrepresentation is significant. CLC occurs mostly for long activities. The extent of CLC for various intensities of activity is subject-dependent. The results suggest that CLC is feasible for most people. CLC occurs spontaneously during unsupervised daily activity in everyone in our cohort, which suggests a mechanistic interaction between the cardiac and the locomotor systems. This interaction should be investigated for medical rehabilitation and sports applications in the future.
Read full abstract