The rapid exploration of sp3 -enriched chemical space is facilitated by fragment-coupling technologies that utilize simple and abundant alkyl precursors, among which alcohols are a highly desirable, commercially accessible, and synthetically versatile class of substrate. Herein, we describe an operationally convenient, N-heterocyclic carbene (NHC)-mediated deoxygenative Giese-type addition of alcohol-derived alkyl radicals to electron-deficient alkenes under mild photocatalytic conditions. The fragment coupling accommodates a broad range of primary, secondary, and tertiary alcohol partners, as well as structurally varied Michael acceptors containing traditionally reactive sites, such as electrophilic or oxidizable moieties. We demonstrate the late-stage diversification of densely functionalized molecular architectures, including drugs and biomolecules, and we further telescope our protocol with metallaphotoredox cross-coupling for step-economic access to sp3 -rich complexity.
Read full abstract