Triple-negative breast cancer (TNBC) is characterized by the complex tumor microenvironment (TME) consisting of an abundance of mesenchymal stem cells (MSCs), which is known to facilitate epithelial-to-mesenchymal transition (EMT). The development of single-cell genomics is a powerful method for defining the intricate genetic landscapes of malignancies. In this study, we have employed single-cell RNA sequencing (scRNA-seq) to dissect the intra-tumoral heterogeneity and analyze the single-cell transcriptomic landscape to detect rare consequential cell subpopulations of significance. The scRNA-seq analysis of TNBC and Normal patient derived samples revealed that EMT markers and transcription factors were most upregulated in MSC population. Further, exploration of gene expression analysis among TNBC and Normal patient-derived MSCs ascertained the role of SQSTM1/P62 and Wnt/β-catenin in TNBC progression. Wnt/β-catenin and Wnt/PCP signaling pathways are prominent contributors of EMT, stemness, and cancer stem cell (CSC) properties of TNBC. SQSTM1/P62 cooperates with the components of the Wnt/PCP signaling pathway and is critically involved at the interface of autophagy and EMT.Moreover, siRNA targeting SQSTM1/P62 and inhibitor of Wnt/β-catenin (FH535) in conjunction was used to explore molecular modification of EMT and stemness markers. Although SQSTM1/P62 is not crucial for cell survival, cytotoxicity assay revealed synergistic interaction between the siRNA/inhibitor. Modulation of these important pathways helped in reduction of expression of genes and proteins contributing to CSC properties. Gene and protein expression analysis revealed the induction of EMT to MET. Moreover, co-treatment resulted in inactivation of non-canonical Wnt VANGL2-JNK signaling axis. The synergistic impact of inhibition of SQSTM1/P62 and Wnt/β-catenin signaling facilitates the development of a potential therapeutic regimen for TNBC.
Read full abstract