<p style='text-indent:20px;'>The goal of this paper is to examine the place of modelling in STEM education and teacher education. First, we introduce modelling as a cyclical process of generating, testing, and applying knowledge while highlighting the epistemological commonalities and differences between the STEM disciplines. Second, we build on the four well-known frameworks, to propose an Educational Framework for Modelling in STEM, which describes both teacher and student roles in the modelling cycle. Third, we use this framework to analyze how modelling is presented in the new mathematics and science school curricula in two Canadian provinces (Ontario and British Columbia), and how it could be implemented in teacher education. Fourth, we emphasize the epistemological aspects of the Educational Framework for Modelling in STEM, as disciplinary epistemological foundations may seem too abstract to both teacher educators and teachers of STEM school subjects. Yet, epistemologies are the driving forces within each discipline and must be considered while teaching STEM as a unified field. To nurture critical thinkers and innovators, it is critical to pay attention to what knowledge is and how it is created and tested. The Educational Framework for Modelling in STEM may be helpful in introducing students and future teachers to the process of modelling, regardless of if they teach it in a single- or a multi-discipline course, such as STEM. This paper will be of interest to teacher educators, teachers, researchers, and policy makers working within and between the STEM fields and interested in promoting STEM education and its epistemological foundations.</p>
Read full abstract