BackgroundHuman-induced pluripotent stem cells (hiPSCs) are considered an ideal resource for regenerative medicine because of their ease of access and infinite expansion ability. To satisfy the sizable requirement for clinical applications of hiPSCs, large-scale, expansion-oriented, xeno-free, and cost-effective media are critical. Although several xeno-free media for hiPSCs have been generated over the past decades, few of them are suitable for scalable expansion of cultured hiPSCs because of their modest potential for proliferation and high cost.MethodsIn this study, we developed a xeno-free ON2/AscleStem PSC medium (ON2) and cultured 253G1 hiPSCs on different matrices, including iMatrix-511 and gelatin nanofiber (GNF) in ON2. Over 20 passages, we evaluated cell proliferation by doubling times; pluripotency by flow cytometry, immunofluorescence staining and qRT-PCR; and differentiation ability by three germ layer differentiation in vitro and teratoma formation in severe combined immunodeficiency mice, followed by histological analysis. In addition, we compared the maintenance effect of ON2 on hiPSCs with StemFit® AK02 (AK02N) and Essential 8™ (E8). Besides 253G1 hiPSCs, we cultivated different hiPSC lines, including Ff-l01 hiPSCs, ATCC® ACS-1020™ hiPSCs, and Down’s syndrome patient-specific ATCC® ACS-1003™ hiPSCs in ON2.ResultsWe found that 253G1 hiPSCs in ON2 demonstrated normal morphology and karyotype and high self-renewal and differentiation abilities on the tested matrices for over 20 passages. Moreover, 253G1 hiPSCs kept on GNF showed higher growth and stemness, as verified by the shorter doubling time and higher expression levels of pluripotent markers. Compared to AK02N and E8 media, 253G1 hiPSCs grown in ON2 showed higher pluripotency, as demonstrated by the increased expression level of pluripotent factors. In addition, all hiPSC lines cultivated in ON2 were able to grow for at least 10 passages with compact clonal morphology and were positive for all detected pluripotent markers.ConclusionsOur xeno-free ON2 was compatible with various matrices and ideal for long-term expansion and maintenance of not only healthy-derived hiPSCs but also patient-specific hiPSCs. This highly efficient medium enabled the rapid expansion of hiPSCs in a reliable and cost-effective manner and could act as a promising tool for disease modeling and large-scale production for regenerative medicine in the future.