Turbulence and chaos play a fundamental role in stellar convective zones through the transportof particles, energy and momentum, and in fast dynamos, through the stretching, twisting and folding of magnetic flux tubes. A particularly revealing way to describe turbulent motions is through the analysis of Lagrangian coherent structures (LCS), which are material lines or surfaces that act as transport barriers in the fluid. We report the detection of Lagrangian coherent structures in helical MHD dynamo simulations with scale separation. In an ABC--flow, two dynamo regimes, a propagating coherent mean--field regime and an intermittent regime, are identified as the magnetic diffusivity is varied. The sharp contrast between the chaotic tangle of attracting and repelling LCS in both regimes permits a unique analysis of the impact of the magnetic field on the velocity field. In a second example, LCS reveal the link between the level of chaotic mixing of the velocity field and the saturation of a large--scale dynamo when the magnetic field exceeds the equipartition value.