Discrete wavelet transform (DWT) denoising contains three steps: forward transformation of the signal to the wavelet domain, reduction of the wavelet coefficients, and inverse transformation to the native domain. Three aspects that should be considered for DWT denoising include selecting the wavelet type, selecting the threshold, and applying the threshold to the wavelet coefficients. Although there exists an infinite variety of wavelet transformations, 22 orthonormal wavelet transforms that are typically used, which include Haar, 9 daublets, 5 coiflets, and 7 symmlets, were evaluated. Four threshold selection methods have been studied: universal, minimax, Stein's unbiased estimate of risk (SURE), and minimum description length (MDL) criteria. The application of the threshold to the wavelet coefficients includes global (hard, soft, garrote, and firm), level-dependent, data-dependent, translation invariant (TI), and wavelet package transform (WPT) thresholding methods. The different DWT-based denoising m...